organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

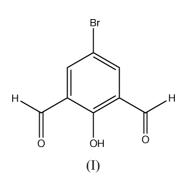
Séverine Duclos, Bruno Therrien and Thomas R. Ward*

Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2007 Neuchâtel, Switzerland

Correspondence e-mail: thomas.ward@unine

Key indicators

Single-crystal X-ray study T = 203 KMean $\sigma(C-C) = 0.006 \text{ Å}$ R factor = 0.045 wR factor = 0.122 Data-to-parameter ratio = 11.8


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Bromo-2-hydroxybenzene-1,3-dicarbaldehyde

In the crystal structure of the title compound, $C_8H_5BrO_3$, two molecules are linked about inversion centres by $C-H\cdots Br$ hydrogen bonds. The structure is also characterized by intraand intermolecular hydrogen bonds between hydroxyl and aldehyde O atoms.

Comment

5-Bromo-2-hydroxybenzene-1,3-dicarbaldehyde, (I), is a precursor in the synthesis of Robson-type ligands (Pilkington & Robson, 1970; Fenton, 1999). Bond lengths and angles are in the usual ranges. The molecule is planar with only minor distortions from the mean plane formed by non-H atoms; the deviations range from 0.004 (4) (for C6) to 0.126 (3) Å (O7). The crystal structure is also characterized by intra- and intermolecular hydrogen bonds (Table 1).

Experimental

The title compound was synthesized according to previously reported methods (Taniguchi, 1984; Xie *et al.*, 1994). To a solution of 4-bromo-2,6-dihydroxymethylphenol (40 g, 0.17 mol) in CHCl₃ (1 l), MnO₂ (232 g, 2.66 mol) was added. The resulting mixture was stirred under reflux for 48 h and cooled to room temperature. Then the solution was filtered and the solid was washed twice with 100 ml of CHCl₃. The washings were added to the original filtrate and the combined solution was evaporated to yield a yellow solid (22 g, 55% yield). Crystals were obtained by the slow evaporation of a CHCl₃ solution. ¹H NMR (200 MHz, CDCl₃, p.p.m.): 11.55 (*s*, 1H), 10.20 (*s*, 2H), 8.07 (*s*, 2H).

Crystal data

C ₈ H ₅ BrO ₃	$D_x = 2.000 \text{ Mg m}^{-3}$
$M_r = 229.03$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3595
$a = 7.5206 (15) \text{\AA}$	reflections
b = 3.9367 (8) Å	$\theta = 1.6-26.8^{\circ}$
c = 25.881 (5) Å	$\mu = 5.36 \text{ mm}^{-1}$
$\beta = 96.84 \ (3)^{\circ}$	T = 203 (2) K
V = 760.8 (3) Å ³	Needle, yellow
Z = 4	0.15 \times 0.06 \times 0.04 mm

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 5 July 2001

Accepted 15 August 2001

Online 31 August 2001

Data collection

1476 reflections

125 parameters

Siemens SMART CCD diffractometer ω scans (1271 frames, 0.30°, 10 s, detector distance 5.5 cm, detector angle 23.0°) Absorption correction: multi-scan (Blessing, 1995) $T_{min} = 0.528$, $T_{max} = 0.807$	3595 measured reflections 1476 independent reflections 1280 reflections with $l > 2\sigma(l)$ $R_{int} = 0.108$ $\theta_{max} = 26.8^{\circ}$ $h = -7 \rightarrow 9$ $k = -4 \rightarrow 4$ $l = -31 \rightarrow 31$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.122$ S = 1.15	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0504P)^{2} + 1.1160P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 (\Delta/\sigma)_{\text{max}} = 0.021$

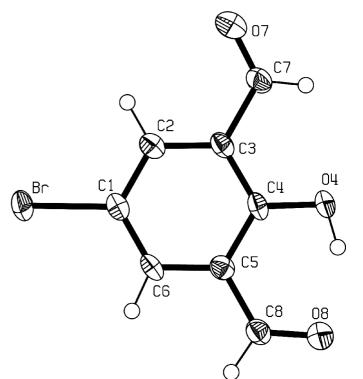


Table 1Hydrogen-bonding geometry (Å, °).

All H-atom parameters refined

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H4···O8	0.89	1.79	2.608 (7)	151
$O4-H4\cdots O4^{i}$	0.89	2.47	2.935 (7)	113
C2−H2···Br ⁱⁱ	1.00	2.93	3.921 (5)	173
C6−H6···O7 ⁱⁱⁱ	0.95	2.57	3.495 (9)	164
С7−Н7…О4	0.94	2.40	2.779 (8)	104

 $\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\min} = -0.77 \text{ e} \text{ Å}^{-3}$

Symmetry codes: (i) $\frac{3}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$; (ii) 1 - x, 1 - y, -z; (iii) x - 1, y - 1, z.

Data collection: *SMART* (Siemens, 1994–1996); cell refinement: *SAINT* (Siemens, 1994–1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL*97.

This work was supported by the Swiss National Science Foundation and the Stiftung für Stipendien auf dem Gebiete der Chemie (award of an A. Werner Fellowship to TRW, 1994– 1999).

Figure 1

ORTEP view (*SHELXTL*; Siemens, 1996) of 5-bromo-2-hydroxybenzene-1,3-dicarbaldehyde showing displacement ellipsoids at the 50% probability level.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Fenton, D. E. (1999). Chem. Soc. Rev. 28, 159-168.

Pilkington, N. H. & Robson, R. (1970). Aust. J. Chem. 23, 2225-2236.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994–1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Taniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683-2684.

Xie, R.-G., Zhang, Z.-J., Yan, J.-M. & Yuan, D.-Q. (1994). Synth. Commun. 24, 53–58.